Improving the Effectiveness of Self-Organizing Map Networks Using a Circular Kohonen Layer
نویسندگان
چکیده
• Corresponding Author. • This research is support in part by a grant from the Dean’s Award for Excellence Summer Research Grants program at Arizona State University, College of Business. Abstract Kohonen's self-organizing map (SOM) network is one of the most important network architectures developed during the 1980's. The main function of SOM networks is to map the input data from an n-dimensional space to a lower dimensional (usually one or twodimensional) plot while maintaining the original topological relations. A well known limitation of the Kohonen network is the “boundary effect” of nodes on or near the edge of the network. The boundary effect is responsible for retaining the undue influence of initial random weights assigned to the nodes of the network leading to ineffective topological representations. To overcome this limitation, we introduce and evaluate a modified, “circular” weight adjustment procedure. This procedure is applicable to a class of problems where the actual coordinates of the output map do not need to correspond to the original input topology. We tested the circular method with an example problem from the domain of group technology, typical of such class of problems.
منابع مشابه
Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملKohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کامل